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2 Shalom Lappin

1 Introduction

Two of the central elements of Montague semantics (Montague, 1974b) are (i)
a higher-order intensional logic IL that incorporates Church’s simple theory
of types (STT, (Church, 1940)), and (ii) a model theory that uses a Kripke
frame semantics. The latter gives a modalized treatment of intensions based on
Carnap’s view of an intension as a function from possible worlds to denotations
(Carnap, 1947).1 These formal devices have continued to play an influential
role in semantic theory even in many of the revisions of Montague semantics
and the alternative semantic theories that have emerged in the past thirty
years.

Montague’s framework remains a seminal achievement in formal semantic
theory. However, several of its foundational assumptions encounter serious
problems when this framework is extended beyond the small fragment of Eng-
lish that Montague formalized. In this chapter I will examine several of these
problems, and I will consider alternatives to Montague’s type theory and his
characterization of intensions in order to deal with these problems.

In Section 2, I give a brief summary of the architecture of IL, and take up
some of the di�culties that it raises. Section 3 describes Property Theory with
Curry Typing (PTCT, (Fox & Lappin, 2005, 2010)), a first-order semantic
representation system that uses Curry typing with weak polymorphism. In
Section 4, I discuss how PTCT provides a formal solution to the problem of
fine-grained intensionality through its typed treatment of identity vs. equi-
valence. I then extend this solution to a computational account of intensional
di↵erence which accounts for intensions without using possible worlds. I ar-
gue that worlds are not e↵ectively representable, and so it is necessary to
develop a cognitively viable intensional semantics on foundations that do not
rely on them. Section 5 presents some programmatic ideas on how one could
move beyond classical categorial semantic theories to a probabilistic system
that accommodates the pervasive gradience of semantic properties. Such an
approach also provides a framework for addressing the nature of semantic

? The main ideas in this chapter were presented in my NASSLLI 2012 course Altern-
ative Paradigms of Computational Semantics, which, in turn, developed out of
many years of fruitful joint work with Chris Fox. I am grateful to the participants
in this course for stimulating feedback on these ideas, and to Chris for wonder-
ful cooperation, that has shaped my thinking on the foundational questions of
semantic theory. I would also like to thank Robin Cooper, Simon Dobnik, Jan
van Eijck, Jonathan Ginzburg, Noah Goodman, Sta↵an Larsson, Peter Sutton,
and Dag Westerst̊ahl for very helpful discussion of some of the issues addressed
in this chapter.

1 More precisely Montague (1973) uses translation of natural language into IL to in-
duce a model theoretic interpretation of the expressions of NL. Montague (1974a)
applies rules of model theoretic interpretation directly to the typed expressions
of English. My concern here is with the type and model theories common to both
versions of this approach.
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learning. Finally, Section 6 states conclusions and suggests some directions
for future work on the issues considered in this chapter.
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2 Higher-Order Intensional Logic

2.1 The Syntax and Semantics of IL

Montague (1973) interprets the expressions of a fragment of English by spe-
cifying a formal syntax for this fragment and mapping its syntactic categories
into the types of IL. This mapping is required to be a homomorphism, which
assigns all elements of a category C to the same type ⌧ . The homomorphism
is many-to-one, with several distinct categories going to the same type. So,
for example, common nouns and verb phrases are assigned the type hhs, ei, ti.
This type is a function from individual intensions (functions from worlds to
entities of type e) to truth-values (type t).

The types of IL are defined recusively as follows:

Basic Types:

1a. t (truth-values)
b. e (individual entities)

Exponential Types:

2. If a, b are types, then ha, bi is a type.
(ha, bi corresponds to a ! b in more standard type theoretic notation.)

Intensional Types:

3. If a is a type, then hs, ai is a type (the type of the intension of a).

The set ME (meaningful expressions) of well-formed expressions of IL is
defined recursively as a family of typed expressions.

ME of IL

1a. Every variable of type a is in ME

a

.
b. Every constant of type a is in ME

a

.
2. If ↵ 2 ME

a

and u is a variable in ME

b

, then �u↵ 2 ME hb,ai.
3. If ↵ 2 ME ha,bi and � 2 ME

a

, then ↵(�) 2 ME

b

.
4. If ↵,� 2 ME

a

, then ↵ = � 2 ME

t

.
5. If �, 2 ME

t

, then so are
a. ¬�
b. � _  
c. � ^  
d. � !  

e. � $  .
6. If � 2 ME

t

and u is a variable in ME

a

, then 8u� and 9u� 2 ME

t

.
7. If � 2 ME

t

, then ⇧� 2 ME

t

.
8. If ↵ 2 ME

a

, then ^
↵ 2 ME hs,ai.

9. If ↵ 2 ME hs,ai, then
_
↵ 2 ME

a

.
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A model M = hA,W,F i for IL is an ordered triple such that (i) A is the
(non-empty) domain of individuals, (ii) W is the (non-empty) set of possible
worlds, and (iii) for each type a of IL, F is a function from the non-logical
constants of ME

a

to interpretations of these constants. For each constant
c 2 ME

a

, F (c) is a function f

c

: W ! D

a

, where D
a

is the domain of possible
denotations for expressions of type a.

Each non-logical constant of type a has a domain of possible denotations
D

a

. The set of these domains is defined recursively as follows.

The Domain D of Denotations for the Types of IL

1. D

e

= A

2. D

t

= {0, 1}
3. Dha,bi = D

b

Da (where D

b

Da is the set of functions from D

a

to D

b

)

4. Dhs,ai = D

a

W

Let g be an assignment function such that for any variable x 2 a of IL,
g(x) 2 D

a

. For a model M of IL, let w 2 W . The parameterized interpretation
function k↵kM,w,g determines the value of an expression ↵ 2 ME relative to
M , w, and g.

A set of semantic rules provides a recursive definition of k↵kM,w,g, where
the recursion specifies the semantic values of expressions for each type in IL.

1. If � 2 ME

t

, then k�kM,w = t i↵ k�kM,w,g = t for all g.
2. If � 2 ME

t

, then � is valid in IL i↵ k�kM,w = t for all M and w.
3. If � is a set of �

i

2 ME

t

and  2 ME

t

, then � |=  i↵ for every M,w

where all �
i

2 � are such that k�
i

kM,w = t, k kM,w = t.

2.2 Generalized Quantifiers and Modification in IL

Noun phrases in natural language correspond to generalized quantifiers (GQs)
in IL. Abstracting away from intensions in IL for the moment, these are ex-
pressions of the type hhe, ti, ti, which denote sets of properties.

(1)a. John sings.
b. John ) �Phe,ti[P (johnhei)]hhe,ti,ti
c. sings ) �xhei[sing

0
he,ti(x)]he,ti

d. John sings ) �P [P (john)]hhe,ti,ti(�x[sings
0(x)]he,ti) =

e. �x[sings0(x)]he,ti(johnhei) =
f. sing

0(john)hti

(2)a. Every girl programs.
b. every ) �Qhe,ti�Phe,ti[8x[Q(x) ! P (x)]hti]hhe,ti,hhe,ti,tii
c. girl ) �xhei[girl

0
he,ti(x)]he,ti

d. every girl ) �Qhe,ti�Phe,ti[8x[Q(x) ! P (x)]hti]hhe,ti,hhe,ti,tii
(�xhei[girl

0
he,ti(x)]he,ti) =
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e. �Phe,ti[8x[girl0(x) ! P (x)]hti]hhe,ti,ti
f. programs ) �xhei[program

0
he,ti(x)]he,ti

e. Every girl programs ) �Phe,ti[8x[girl0(x) ! P (x)]hti]hhe,ti,ti
(�xhei[program

0
he,ti(x)]he,ti) =

g. 8x[girl0(x) ! program

0(x)]hti

Montague did not represent higher-order GQs like most in IL.2 However,
if we add a type n for natural numbers and a cardinality predicate card of
type hhe, ti, ni (a function from properties to numbers), then we can represent
these quantifiers.

(3)a. Most students sing.
b. most) �Qhe,ti[�Phe,ti[cardhhe,ti,ni(�x[Q(x)^P (x)]) > cardhhe,ti,ni(�x[Q(x)^

¬P (x)])]]hhe,ti,hhe,ti,tii
c. most students ) �Phe,ti[card(�x[student

0(x) ^ P (x)]) >
card(�x[student0(x) ^ ¬P (x)])]hhe,ti,ti

d. most students sing ) �Phe,ti[card(�x[student
0(x) ^ P (x)]) >

card(�x[student0(x) ^ ¬P (x)])]hhe,ti,ti(�xhei[sing
0
he,ti(x)]he,ti) =

e. card(�x[student0(x) ^ sing

0(x)]) > card(�x[student0(x) ^ ¬sing0(x)])hti

Reinstating intensions, modifiers (adjectives and adverbs) are of type
hhs, ⌧i, ⌧i, functions from intensions of type ⌧ to extensions of type ⌧ .
So, for example, nominal adjectives and verb phrase adverbs are of type
hhs, he, tii, he, tii. These are functions from properties of individuals in in-
tension (functions from worlds to sets of individuals) to extensions of such
properties (sets of individuals). This type allows for a unified treatment of
intensional and extensional (intersective) modifiers.

(4)a. Mary bought a green car.
b. 9x((green0

hhs,he,tii,he,tii(
^
car

0
hs,he,tii))he,ti(x) ^ bought

0(mary, x))

(5)a. Rosa dances beautifully.
b. (beautifully0hhs,he,tii,he,tii(

^
dance

0
hs,he,tii))he,ti(rosa)

(6)a. Mary bought a toy car.
b. 9x((toy0hhs,he,tii,he,tii(^car0hs,he,tii))he,ti(x) ^ bought

0(mary, x))

(7)a. Rosa allegedly dances
b. (allegedly0hhs,he,tii,he,tii(

^
dance

0
hs,he,tii))he,ti(rosa)

Montague employs meaning postulates to sustain inferences like the fol-
lowing for extensional modifiers.

(8)a. 9x((green0
hhs,he,tii,he,tii(

^
car

0
hs,he,tii))he,ti(x) ^ bought

0(mary, x)) )
b. 9x(car0(x) ^ green

0(x) ^ bought

0(mary, x))

2 See (Barwise & Cooper, 1981; Keenan & Westerst̊ahl, 1997; Westerst̊ahl, this
volume) on GQs in general, and higher-order GQs in particular.
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(9)a. (beautifully0hhs,he,tii,he,tii(
^
dance

0
hs,he,tii))he,ti(rosa) )

b. dance

0(rosa)

The meaning postulates will not support such inferences for intensional
modifiers, like those in (6) and (7).

2.3 Problems with IL

The first problem to note is that IL does not accommodate fine-grained inten-
sionality. Montague’s characterization of intensions as functions from worlds
(indices of worlds and times) to denotations reduces intensional identity to
equivalence of denotation across possible worlds. Logically equivalent expres-
sions are semantically indistinguishable. This is too coarse a criterion for se-
mantic identity. Logical equivalence is not a su�cient condition for intersub-
stitutability in all contexts.

(10)a. Every prime number is divisible only by itself and 1. ,
b. If A ✓ B and B ✓ A, then A = B.

(11)a. John believes that every prime number is divisible only by itself and 1. 6,
b. John believes that if A ✓ B and B ✓ A, then A = B.

The second problem is that by adopting Church’s STT, Montague com-
mits IL to an inflexible and relatively impoverished type system. In natural
language verbs, coordinating expressions, and other function denoting terms
apply to arguments of distinct types, which is a kind of polymorphism of se-
mantic type. Attempting to capture this fact within IL has resulted in the
addition of awkward type changing and type coercion operations. IL requires
that all non-basic types are exponential, and so additional types (product
types, comprehension types, subtypes, and lists) are not available. They could,
of course, be added, which would involve a significant extension of the type
system and the model theory.

A third, and related di�culty, is that lexical semantic relations are ex-
pressed only through meaning postulates, which are, e↵ectively, constraints
on possible models. In a richer type system, at least some of these elements
of meaning could be expressed through subtypes (such as intensional vs. ex-
tensional modifiers). Given Montague’s strict homomorphism condition on
the mapping of natural language syntactic categories to the types of IL, sub-
typing would require the proliferation of additional syntactic subcategories
corresponding to subtypes.

Fourth, IL has significant expressive power by virtue of being higher-order.
But there is a price to pay for this power. In general the set of theorems of
a higher-order logic is not recursively enumerable, and so its proof theory
is incomplete. Constructing a computationally viable higher-order theorem
prover for a subpart of a system like IL that would be adequate for natural
language semantics is a di�cult task.
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Fifth, gradience in semantic properties (such as predication and entail-
ment) is pervasive throughout all aspects of interpretation, and it is plausible
to regard it as intrinsic to the semantics of natural language. Montague se-
mantics excludes gradient semantic properties, and it can only accommodate
gradience as a performance factor.

Finally, it is not clear how a representation system like IL could be the tar-
get of e�cient semantic learning that is largely data and observation driven.
On the other hand, there does not appear to be convincing psychological evid-
ence to suggest that IL encodes universal constraints (prior learning biases)
which define the hypothesis class for semantic learning. So IL does not o↵er
a psychologically plausible class of representations for the semantic part of
language acquisition.

2.4 A Representability Problem for Possible Worlds

The last problem for IL cited in Section 2.3 raises a more general issue for
the model theory that Montague uses. Can we represent possible worlds in a
computationally tractable and cognitively plausible way? Montague regards
the study of syntax, semantics, and pragmatics as a branch of mathematics,
rather than of psychology. From this perspective, representing worlds is not
an issue. We can take them to be unanalysed elements of a set, as in the
Kripke frame semantics (Kripke, 1963) that Montague uses.

However, if we wish to account for semantic learning and the procedures
through which speakers/hearers actually compute interpretations for expres-
sions in their language, then it is a central problem. Tractability in learning
and representation are basic requirements for cognitively viable theories of
syntax, morphology, and phonology. These conditions also apply to psycholo-
gically plausible theories of interpretation.

Carnap (1947); Kripke (1959); Jonsson & Tarski (1951) characterize worlds
as maximally consistent sets of propositions. Fox et al. (2002); Fox & Lappin
(2005); Pollard (2008) generalize this approach to define worlds as untrafilters
in the prelattice of propositions, and they take the truth of a proposition,
relative to a world, to be its membership in such an ultrafilter. If the logic
of propositions is higher-order, then the problem of determining membership
in such a set is not complete. If the logic is classically first-order, then the
membership problem is complete, but undecidable.

Let’s radically simplify the representation of worlds by limiting ourselves
to propositional logic, and assuming that we can generate a maximally con-
sistent set of propositions from a single finite proposition in Conjunctive Nor-
mal Form (CNF, a conjunction of disjunctions) by extending this proposition
through the addition of new conjuncts. It is not clear what (finite) set of rules
or procedures we could use to decide which conjuncts to add to this CNF
proposition in order to generate a full description of a world in a system-
atic way. It is not obvious at what point the conjunction will constitute a
complete description of the world (Rescher, 1999). Notice the contrast with
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syntax, morphology, and phonology here. In these systems we can generate
an infinite set of well formed representations from a finite vocabulary of basic
elements, through a finite set of precisely defined combinatorial operations.

Consistency reduces to the satisfiability of a CNF proposition P . We ex-
tend P by adding new conjucts to it to give P 0, and testing P 0 for satisfiability.
All the propositions that P entails must be added to it, and all the the propos-
itions with which P is inconsistent must be excluded, in order to obtain the
maximal consistent set of propositions that describe a world. This is the kSAT
problem, which consists in attempting to identify a set of truth-value assign-
ments to the literals (propositional variables or their negations) of a formula
P in CNF that satisfies P . There are are well known complexity results for
di↵erent types of kSAT problems (Papadimitriou, 1995). If the number k of
literals for each conjunct in P is such that 3  k, then the satisfiability prob-
lem for P is, in the general case, NP-complete, and so it is computationally
intractable.

Given that we have to include all of the entailments of P in the maximal
consistent set that represents a world w, and exclude all of the sentences with
which P is incompatible, we have no basis for restricting the cardinality of k to
less than 3 for the extension P

0 of P that we use to encode w. Therefore, even
given the (radically) simplifying assumptions that we have made concerning
the representation of a world with a finite extendable formula of propositional
logic in CNF, verifying that this formula is consistent, at each point of its
construction, is an intractable problem. It follows that individual worlds are
not e↵ectively representable, and, therefore, neither is the set of worlds.

Notice that the problem is not avoided by using a Kripke frame semantics
(as in Montague (1974b)) in which worlds are simple elements of a set W .
In a system of this kind a model is an ordered k-tuple hD,W,F,Ri, where D

is the domain of objects, F is an interpretation function that assigns inten-
sions to the constants of a language, and R is an accessibility relation on W .
Intensions are functions from worlds to denotations of the appropriate type.
Propositions are functions from worlds to truth-values, and so every w

i

2 W

is in a one-to-one correspondence with the maximal set Prop

wi of propositions
that are true at w

i

. But then each w

i

is identified by its corresponding set of
maximal propositions, and the problem of representing w

i

reduces to that of
determining membership in Prop

wi .
Some formal semantic theories have characterised modality and intensions

in terms of the set of possible situations rather than the set of worlds (Heim,
1990; Lappin & Francez, 1994; Lappin, 2000; Kratzer, 2014). Possible situ-
ations are parts of worlds, and so they are not (necessarily) maximal. One
might think, at first glance, that the non-maximality of situations allows us
to avoid the problem of e↵ective representability that arises for worlds.

In fact, positing the set of possible situations as the basis for an intensional
semantics makes the problem considerably worse. If a world is a maximal
consistent set of propositions, each situation in that world will be a subset
of this maximal set. Each world w

i

yields a power set P(w
i

) of the set of
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propositions that defines w
i

. As the maximal set of propositions that specify
a w

i

is infinite, the cardinality of P(w
i

) is uncountably infinite (by Cantor’s
theorem for the cardinality of power sets). The set of possible situations is
the union of P(w

i

) (more accurately, of P(w
i

)� ; ) for all w
i

. This set is not
recursively enumerable.

It seems, then, that neither possible worlds nor possible situations are
appropriate elements for a cognitively plausible theory of semantic learning
and interpretation. We need to characterise both intensions and modality in
terms that do not depend upon these objects in our semantic theory.
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3 Property Theory with Curry Typing

3.1 The Untyped �-Calculus, Curry Typing, and First-Order Logic

In Church’s STT every expression of a language L is specified as the element
of a type. Therefore its type is intrinsic to its status as an expression of L.
By contrast, in Curry typing the expressions of a language are introduced
independently of their types, and type membership statements are part of the
language.3 IL uses a strictly typed version of the �-calculus, which requires
that each expression be uniquely typed. Curry typing permits polymorphism
in which the same expressions may inhabit several types.

Property Theory with Curry Typing uses the untyped �-calculus as the
combinatorial system for generating the terms of its representation language.
The untyped �-calculus is a “simple” calculus of substitutions that uses func-
tion application (the application of a function t to an argument t0, t(t0)) and
abstraction (the formation of a function �x(t) from a term t) to derive normal
forms from terms in the language. The terms in this calculus can be thought
of as programs. In principle, all computer programs can be encoded as terms
in the calculus. Executing a program consists in performing substitutions on
terms. This combinatorial system is the basis for functional programming
languages, like Lisp, Scheme, ML, Haskell, and Miranda.

PTCT factors the semantic representation language into three distinct
components: (i) an untyped �-calculus of terms for the combinatorial engine
that generates representations of meaning, (ii) Curry-types corresponding to
natural language semantic types, and (iii) a first-order logic of well-formed
formulas for reasoning about the truth of propositions that terms belonging
to the appropriate type represent. This federated approach allows for greater
flexibility in coordinating the formal power and the expressive resources of
the theory with the semantic properties of natural language.4 The terms of
untyped �-calculus are intensions, and these are assigned Curry-types. The
logic, which includes a truth predicate, determines an entailment relation
among propositions, represented by propositional terms.

Because PTCT uses the untyped �-calculus it is necessary to impose con-
straints on the interaction of the di↵erent components of the system to avoid
paradoxes. These constraints consist in restrictions on the quantification over
type variables, where this restricted quantification yields a weak form of poly-
morphism, and the exclusion of self-application for �-terms (a function cannot
take itself as an argument.)

3 See (Turner, 1997) for a discussion of the distinction between Church and Curry
typing.

4 Fox & Lappin (2014) present a version of PTCT in which the mechanisms handled
by these three distinct languages are encoded in a single typed predicate logic.
This allows for a fully unified representation of the framework.
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3.2 Syntax of PTCT

Term Language:

Logical Constants

l ::= ⇠̂ | ˆ̂ | _̂ | !̂ | $̂ | 8̂ | 9̂ | =̂
T

| ⇠̂=
T

| ✏T

Terms:

t ::= x | c | l | T | �x(t) | (t)t

The language of terms is the untyped �-calculus, enriched with logical con-
stants. It is used to represent the interpretations of natural language expres-
sions, and so its expressions are the intensions of the system. It has no internal
logic, but the logic is imposed ”externally” through the typing and logic com-
ponents. The identity criteria for terms are those of the �-calculus, which are
the ↵, �, and ⌘ conditions.

Types:

T ::= B | Prop | T =) S | X | {x 2 T.'

0} | {x.'0} | ⇧X.T | S ⌦ T

The type system includes propositional (Prop), functional (T =) S), separa-
tion ({x 2 T.'

0}), comprehension ({x.'0}), and product (S⌦T ) types, as well
as restricted quantification over type variables (⇧X.T ). '0 is a term represent-
able fragment of w↵. The type quantification allows types to be polymorphic.
The restriction on quantification over types consists in the requirement that
type variables X range over non-polymorphic types. This constraint avoids
impredicativity (self-application and the paradoxes that it generates). The
languages of types and terms are combined with appropriate rules and ax-
ioms to produce a Curry-typed �-calculus.

Well-Formed Formulas:

Atomic W↵s

↵ ::= (t =
T

s) | t 2 T | t ⇠=
T

s | T(t)

W↵s

' ::= ↵ | ⇠' | (' ^  ) | (' _  ) | ('!  ) | ('$  ) | (8x') | (9x') |
(8X') | (9X')

The first-order language of w↵s is used to formulate type judgements for
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terms, and truth conditions for those terms judged to be in Prop. If a term t

represents a proposition, then T(t) is a w↵ that denotes its truth conditions.
The identity criteria of w↵s are those of their truth conditions. Type variables
X range only over term representable types (types that can be represented as
terms in the term language).

It is important to distinguish between the notion of a proposition itself in
the language of w↵s, and that of a term that represents a proposition in the
language of terms. If term t represents a proposition, then we can form a w↵,
T(t), where T(t) will be a true w↵ whenever the proposition represented by t

is true, and false w↵ whenever the proposition represented by t is false. The
representation of a proposition t 2 Prop is distinct from its truth conditions
T(t). Terms of type Prop have no intrinsic logic. Their identity criteria are
those of the untyped �-calculus.

3.3 A Proof Theory for PTCT

Proof rules and axioms govern the logical behaviour of PTCT. The connectives
of the w↵s have standard classical first-order behaviour. The usual rules of the
untyped �-calculus (↵, �, and ⌘ equivalence) define the identity of terms =

T

.
The rules of the Curry-typed calculus, augmented by rules for those terms
that represent propositions (Prop) specify the typing of �-terms. Additional
rules for the language of w↵s that govern the truth conditions of terms in Prop

(which represent propositions) give the truth conditions for propositions. The
theory has a notion of extensional equivalence, ⇠=

T

, which is distinct from
intensional identity, =

T

.
As an example of the principles of the proof theory consider the rules of

inference for conjunction, both as it applies in the language of w↵s (^), and
in the language of terms (ˆ̂).5

1. The basic connectives of the w↵

'  

' ^  
^
i

' ^  
'

^
e

' ^  
 

^
e

2. Typing rules for �-terms

t 2 Prop ^ t

0 2 Prop ! (t ˆ̂ t

0) 2 Prop

3. Truth conditions for Propositions

t 2 Prop ^ t

0 2 Prop ! (T(t ˆ̂ t

0) $ T

t ^ T

t

0)

5 In Fox & Lappin (2005) these principes are encoded as tableaux rules, but here
they are given in the format of sequent calculus and inference rules for ease of
presentation.
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14 Shalom Lappin

The proof theory defines identity and equivalence of terms, typing and
type inference, and the rules of truth for the first-order logic of w↵s. It is the
primary vehicle for determining the interpretation of expressions in each of
the three components of PTCT, and the relations among these components.
It is through the proof theory that a logic is imposed on the language of
terms, specifically those terms that belong to the type Prop, and so represent
propositions. The model theory, briefly sketched in Section 3.5, is designed to
sustain the soundness and the completeness of the proof theory.

3.4 Polymorphism and Subtyping

The expressions of natural language frequently correspond to more than one
type. So, for example, the same verb can take subjects of distinct types, as in
(12), and a conjunction can be type heterogenous, as in (13).

(12)a. John finished early.
b. Voting finished early.
c. The concert finished early.

(13)a. Continuous functions and quarks have interesting formal properties.
b. Mary sees a connection between Bach concertos and fractals.

In a strictly typed representation language like IL it is necessary to assign
each such expression to a distinct functional type. The weak polymorphism
of PTCT allows the same expressions to belong to more than one type, as
functional types can take arguments of distinct types. Type variables can be
used for such arguments. A verb like finish can have the type⇧X.X =) Prop,
permitting it to take type distinct subject arguments. Similarly, and can be
assigned to the type ⇧X.X =) X =) X, which allows it to apply to di↵erent
types of conjuncts. Therefore, PTCT, in contrast to IL, does not require type
changing or type coercion rules to accommodate these expressions.

The typing component of PTCT includes separation types of the form

z 2 {x 2 T : '0} $ (z 2 T ^ '0[z/x]).

This allows us to define intersection, union and di↵erence types. To ensure
that the theory is first-order, separation types are required to be term repres-
entable, and so '0 must be term representable. To sustain this result Fox &
Lappin (2005) define a term representable fragment of the language of w↵s.
The separation, comprehension, and product types of PTCT give it greater
expressive power than IL by allowing for an enriched subtyping system. In
this respect PTCT adopts a rich type system, similar in approach to the one
that Type Theory with Records (TTR, (Cooper, 2012; Cooper & Ginzburg,
this volume)) uses.

Fox & Lappin (2005) use separation types for dynamic treatments of ana-
phora and ellipsis. They characterise both anaphora and ellipsis resolution as
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Curry Typing, Polymorphism, and Fine-Grained Intensionality 15

a process of identifying the value of a type parameter with a subtype condition
on an individual variable in PTCT. The content of the condition is recovered
from the representation of the antecedent. For a discussion of pronominal ana-
phora see Kehler (this volume), and for an account of ellipsis see Kempson
et al. (this volume).

Fox & Lappin (2010) use product types and the weak polymorphism of
PTCT to generate underspecified scope representations for sentences contain-
ing quantified NPs. They define a family of functions perms scope

k

(where
k > 1) that generate all k! indexed permutation products of a k-ary indexed
product term ht1, . . . , tki as part of the procedure for generating the set of
possible scope readings of a sentence. This function is interpreted by a tree
construction algorithm that produces the set of all possible permutations of
scope-taking elements to which perms scope

k

applies.
More specifically, perms scope

k

applies to a k-ary product of scope-taking
elements (by default, in the order in which they appear in the surface syntax)
and a k-ary relation representing the core proposition as its arguments. The
scope-taking elements and the core representation can be combined into a
single product, for example as a pair consisting of the k-tuples of quantifiers as
its first element and the core relation as its second. The elements of the k-tuple
of scoping taking terms can be type heterogenous, and so the permutation
function perms scope

k

is polymorphic. It applies to k-tuples (e↵ectively lists)
of di↵erent types, and for each such list it returns the k!-ary product of scoped
readings in the lists as its value. When a k-tuple of quantifiers is permuted, the
�-operators that bind the quantified argument positions in the core relation
are e↵ectively permuted in the same order as the quantifiers in the k-tuple.
This correspondence is necessary to preserve the connection between each GQ
and its argument position in the core relation across scope permutations.

Consider the example

(14) Every student knows a professor.

The GQs interpreting the subject NP, the object NP and the core relation
are given as the PTCT terms

(15)a. Q1 = �P 8̂x✏e(student0(x) !̂ P (x))
b. Q2 = �Q9̂y✏e(professor0(y) ˆ̂

Q(y))
c. �uv[knows0uv], where knows

0
✏ ⇧X.X =) e =) Prop

d. perms scope2hhQ1, Q2i,�uv.knows0uvi

Notice the fact that knows

0 is assigned to a functional type that is poly-
morphic in its initial (object NP) position permits it to takes objects of distinct
types, as in (16)a, where the value of X in the type of knows0 is n rather than
e, and (15)b, where it is Prop.

(16)a. Every student knows a prime number.
b. Every student knows that the assignment is due tomorrow.
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16 Shalom Lappin

The permutations of the quantifiers and the core representation that
perms scope

k

produces for (14) are given by the following.

(17) perms scope2hhQ1, Q2i,�uv.knows0uvi =
hhhQ1, Q2i,�uv[knows0uv]i, hhQ2, Q1i,�vu.knows0uvii

Applying relation-reduction to each of the representations of the scope
orderings gives a pair of propositional terms corresponding to the two readings.

(18) (8̂x✏e(student0(x) !̂ 9̂y✏e(professor0(y) ˆ̂
knows

0(x, y))),
9̂y✏e(student0(y) ˆ̂ 8̂x✏e(professor0(x) !̂ knows

0(x, y))))

An underspecified expression of the form (19) is a �-term of PTCT.

(19) perms scope

k

hhQ1, Q2, ..., Qk

i,�u1, ..., uk

.�

0i

It is possible to specify constraints on possible scope relations among the
elements of hQ1, Q2, ..., Qk

i by applying additional �-terms as filters to the
perms scope

k

term.

3.5 Semantics of PTCT

Following Meyer (1982) we define a model of the untyped �-calculus (e.g. Gen-
eral Functional Models) as D = hD, [D ! D],�, i where D is isomorphic to
[D ! D] and

Ia. D is a non-empty set,
b. [D ! D] is some class of functions from D to D,
c. � : D ! [D ! D],
d.  : [D ! D] ! D, and
e.  (�(d)) = d for all d 2 D.

We interpret the types of PTCT as terms in D that correspond to subsets of
D.

A model of PTCT is M = hD,T,P,B,B, T 0
, T i, where

IIa. D is a model of the �-calculus.
b. T : D ! {0, 1} models the truth predicate T.
c. P ⇢ D models the class of propositions.
d. B ⇢ D models the class of basic individuals.
e. B(B) is a set of sets whose elements partition B into equivalence classes

of individuals.
f. T 0 ⇢ T models the term representation of non-polymorphic types.
g. T ⇢ D models the types.
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Curry Typing, Polymorphism, and Fine-Grained Intensionality 17

Su�cient structural constraints are imposed on T, P and T to validate the
rules of the proof theory for PTCT.

Although PTCT achieves much of the expressive richness of a higher-order
type theory, Fox & Lappin (2005) demonstrate that it remains first-order
in its formal power. They show that its tableau proof theory is sound and
complete. The soundness proof proceeds by showing the downward correctness
of tableaux through induction on the tableaux rules. The completeness proof
proceeds by establishing the upward correctness of tableaux through induction
on the rules. Unlike IL, the theorems of PTCT are recursively enumerable.
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18 Shalom Lappin

4 Fine-Grained Intensionality

4.1 Distinguishing Intensional Identity and Provable Equivalence

As noted in Section 3.3, there are two equivalence notions in PTCT: inten-
sional identity and extensional equivalence, which can apply to expressions of
the same type. The proposition t

⇠=
T

s states that the terms t, s are extension-
ally equivalent in type T . In the case where two terms t, s are propositions
(t, s 2 Prop), then t

⇠=
Prop

s corresponds to t $ s. If two predicates of T
are extensionally equivalent (t ⇠=(T=)Prop) s), then t, s each hold of the same
elements of T , that is 8x(x 2 T ! (Tt(x) $ T

s(x)))..
The proposition t =

T

s states that two terms are intensionally identical
in type T . As noted, the rules for intensional identity are essentially those
of the �↵�⌘-calculus. We are able to derive t =

T

s ! t

⇠=
T

s for all types
inhabited by t, s, but not t

⇠=
T

s ! t =
T

s. Therefore PTCT avoids the
reduction of provable equivalence to intensional identity. Two terms can be
provably equivalent by the proof theory, but not identical. In this case, they
remain intensionally distinct.

PTCT allows us to sustain both the logical equivalence of (10)a and (10)b,
and the non-equivalence of (11)a and (11)b. The former are provably equival-
ent, but they correspond to non-identical propositional terms in PTCT.

(10)a. Every prime number is divisible only by itself and 1. ,
b. If A ✓ B and B ✓ A, then A = B.

(11)a. John believes that every prime number is divisible only by itself and 1. 6,
b. John believes that if A ✓ B and B ✓ A, then A = B.

The proof theory of PTCT induces a prelattice on the terms in Prop.
In this prelattice the members of an equivalence class of mutually entailing
propositional terms (terms that encode mutually entailing propositions) are
non-identical and so correspond to distinct propositions.6 While this result
achieves the formal property of fine-grained intensionality, it does not, in it-
self, explain what intensional non-identity consists in beyond the fact that two
distinct expressions in the language of terms are identified with di↵erent in-
tensions. This leaves us with what we can describe as a problem of ine↵ability.
Intensional di↵erence is posited as (a certain kind of) inscriptional distinctness
in the �-calculus of terms, but this reduction does not o↵er a substantive ex-
planation of the semantic properties that ground the distinction. Intensional
di↵erence remains ine↵able.

6 (Fox et al., 2002; Fox & Lappin, 2005; Pollard, 2008) construct higher-order hyper-
intensional semantic systems using an extended version of Church’s SST and a
prelattice of propositions in which the entailment relation is a preorder.
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Curry Typing, Polymorphism, and Fine-Grained Intensionality 19

4.2 A Computational Account of Intensional Di↵erence

It is possible to characterize the distinction between intensional identity and
provable equivalence computationally by invoking the contrast between op-
erational and denotational semantics in programming language. Two simple
examples illustrate this contrast.7

For the first example take the function predecessorSet(x), which maps an
object in an ordered set into the set of its predecessors. So, for example,
if x 2 {0, 1, 2, 3, 4, 5}, then, with numeric ordering, predecessorSet(x) =
PredSet

x

⇢ {0, 1, 2, 3, 4, 5} such that 8y 2 Pred

x

(y < x).
It is possible to define (at least) two variants of this function, predSet

a

and predSet

b

, that are denotationally equivalent but operationally distinct.
predSet

a

is specified directly in terms of an immediate predecessor relation,
while predSet

b

depends upon a successor relation.

(20)a. predecessorSet

a

(x) = PredSet

x

, if
8y(y 2 PredSet

x

! predecessor(y, x)).
b. predecessor(y, x) if

predecessor

immediate

(y, x); else
predecessor(y, x) if
predecessor

immediate

(y, z), and
predecessor(z, x).

(21)a. predecessorSet

b

(x) = PredSet

x

, if
8y(y 2 PredSet

x

! successor(x, y)).
b. successor(x, y) if

successor

immediate

(x, y); else
successor(x, y) if
successor

immediate

(x, z), and
successor(z, y).

The second example involves functions g : ⌃⇤ ! {1, 0}, that is functions
from ⌃

⇤, the set of strings formed from the alphabet of a language, to the
Boolean values 1 and 0, where g(s) = 1 if s 2 L, and 0 otherwise. Such
a function recognises all and only the strings in a language defined on the
alphabet ⌃. Let g

csg1 be defined by the Definite Clause Grammar (DCG) in
(22), and g

csg2 by the DCG in (23).8

7 For earlier discussions of the main ideas in this Section see Lappin (2012, 2013).
8 See Pereira & Shieber (1987) for an explanation of Definite Clause Grammars.
The DCG in (22) is from Gazdar & Mellish (1989). Matt Purver and I constructed
the DCG in (23) as a Prolog programming exercise for a computational linguistics
course that I gave in the Computer Science Department at King’s College London
in 2002.

In these examples sequences starting with a capital (A, Bn, etc.) are non-
terminal symbols, S is the start or initial symbol, which covers a full string in the
language, and lower case letters are terminal symbols.
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20 Shalom Lappin

(22) S ! [a], S(i).
S(I) ! [a], S(i(I)).
S(I) ! Bn(I), Cn(I).
Bn(i(I)) ! [b], Bn(I).
Bn(i) ! [b].
Cn(i(I)) ! [c], Cn(I).
Cn(i) ! [c].

(23) S ! A(I), B(I), C(I).
A(i) ! [a].
A(i(I)) ! [a], A(I).
B(i) ! [b].
B(i(I)) ! [b], B(I).
C(i) ! [c].
C(i(I)) ! [c], C(I).

Both these DCGs define the same context-sensitive language

{anbncn| 1  n},

the language whose strings consist of n occurrences of a, followed by n bs,
and then n cs. The number of as, bs, and cs match in all strings. Each DCG
uses a counting argument I for a non-terminal symbol to build up a stack of
indices i that gives the successive number of occurrences of as, bs, and cs in a
string. But the grammar in (22) counts from the bottom up, adding an i for
each non-terminal that the recognizer encounters. By contrast the grammar
in (23) imposes the requirement that the three stacks for the non-terminals
A, B, and C be identical, and then it computes the indices top down. The two
grammars are computationally distinct, and using each of them to recognize a
string can produce di↵erent sequences of operations, of di↵erent lengths and
relative e�ciency. Therefore, g

csg1 and g

csg2 are operationally distinct, but
denotationally equivalent. They compute the same string set through di↵erent
sets of procedures.

Recall that the terms of PTCT are �-expressions that encode computable
functions. We have identified these with the intensions of words and phrases
in a natural language. Given the distinction between denotational and oper-
ational meaning we can now interpret the non-identity of terms in the rep-
resentation language as an operational di↵erence in the functions that these
terms express. But a class of such terms can still be provably equivalent in
the sense that they yield the same values for the same arguments by virtue
of the specifications of the functions that they correspond to. This provides a
straightforward account of fine-grained intensionality in PTCT which avoids
taking intensional di↵erence as ine↵able.

Muskens (2005) suggests a similar approach to hyperintensionality. He
identifies the intension of an expression with an algorithm for determining
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its extension.9 There are two major points of di↵erence between Musken’s
theory and the one proposed here. First, he embeds his account in a logic
programming approach, which he seems to take as integral to his explana-
tion of hyperintensionality, while I have developed my analysis in a functional
programming framework. This is, in fact, not an issue of principle. The same
algorithm can be formulated in any programming language. So, for example,
the definitions of predSet

a

and predSet

b

correspond to two Horn clause defin-
itions in Prolog for variant predecessor predicates, predecessorA(Y, X) and
predecessorB(Y, X).

(24) predecessorA(Y, X) : - predecessorImmediate(Y, X).
predecessorA(Z, X) : -
predecessorImmediate(Y, X),
predecessorA(Y, Z).

(25) predecessorB(Y, X) : - successor(X, Y).
successor(X, Y) : - successorImmediate(X, Y).
successor(X, Z) : -
successorImmediate(X, Y),
successor(Y, Z).

Similarly, the DCGs in (22) and (23) that we used to define g

csg1 and g

csg2,
respectively, are (close to) Prolog executable code.

However, the functional programming formulation of the operational view
of fine-grained intensionality follows straightforwardly from PTCT, where the
untyped �-calculus generates the intensional terms of the semantic repres-
entation language, and these encode computable functions. As we have seen
PTCT also o↵ers rich Curry typing with weak polymorphism, and a logic
of w↵s for reasoning about truth and entailment, within a first-order sys-
tem. The fact that it implies the operational account of intensional di↵erence
without further stipulation renders it attractive as a framework for developing
computational treatments of natural language semantic properties.

The second, more substantive point of di↵erence concerns the role of
modality (possible worlds) in characterizing intensions. Muskens develops his
hyperintensional semantics on the basis of Thomason (1980)’s Intentional Lo-
gic. In this logic Thomason proposes a domain of propositions as intensional
objects, where the set of propositions is recursively defined with intensional
connectives and quantifiers. He posits a homomorphism that maps proposi-
tions (and their constituents) to their extensions, and he constrains this homo-

9 Duž́ı et al. (2010) also adopt an operational view of hyperintensionality within
Tichý (1988)’s Transparent Intensional Logic. However, the computational details
of their account are left largely unspecified. Both Muskens (2005) and Duž́ı et al.
(2010) regard their respective proposals as working out Frege’s notion that an
intension is a rule for identifying the denotation of an expression.
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morphism with several meaning postulates that restrict this mapping.10 Mus-
kens modifies and extends Thomason’s logic by specifying a homomorphism
between the intensional expressions of the logic and their extensions across
the set of possible worlds. Propositions are mapped to the set of worlds in
which they are true. As the homomorphism can be many-to-one, distinct pro-
positions can receive the same truth-value across worlds.11

By contrast, PTCT adopts Thomason’s non-modal strategy of mapping
propositions to truth-values. It does this by using a truth predicate to form
a w↵ T(�) to assert the truth of the proposition that the term � 2 Prop

represents. Therefore, like Thomason’s Intentional Logic, PTCT de-modalizes
intensions. This is a positive result. It is not clear why, on the fine grained
view, possible worlds must be essentially connected with the specification of
intensions.

Moschovakis (2006) suggests an operational treatment of meaning within
the framework of the typed �-calculus. He constructs a language L

�

ar

as an
extension of Gallin (1975)’s Ty2. He specifies acyclic recursive procedures for
reducing the terms of L�

ar

to unique cannonical forms. Moschovakis identifies
the meaning (referential intension) of a term in this language with the abstract
algorithm for computing its denotation.

Moschovakis specifies a Kripke frame semantics for L�
ar

which is a variant
of Montague’s possible worlds models (he refers to them as Carnap states).
Carnap states are n-tuples of indices corresponding to worlds, times, speakers,
and other parameters of context. Intensions are characterized as algorithmic
procedures for determining the denotation of a term relative to a world and the
other elements of such an n-tuple. The arguments that were brought against
this view in Muskens’ case apply with equal force here.

On both Musken’s and Moschovakis’ accounts, and the one proposed here,
the content of an intension is the set of computational operations through
which it determines its denotational value, where these need not make essential
reference to possible worlds. In the case of a proposition, the denotation that
it determines is a truth-value, rather than a truth-value relative to a world.

Worlds are not required for an adequate explanation of fine-grained in-
tensionality. On the contrary, such an account must dispense with the ori-
ginal characterization of intensions as functions from worlds to extensions

10 Fox & Lappin (2005) point out that Thomason’s logic is problematic because
it does not characterize the algebraic structure of the domain of propositions.
It does not o↵er a proof theory that defines entailment for propositions, and so
it leaves the relation between intentional identity and extensional equivalence
crucially under determined.

11 (Fox et al., 2002; Fox & Lappin, 2005; Pollard, 2008) adopt a similar view for the
fine-grained higher-order logics that they construct. They define worlds as untra-
filters in the prelattice of propositions, and they take the truth of a proposition,
relative to a world, to be its membership in such an ultrafilter. As entailment in
the prelattice is defined by a preorder, distinct propositions can belong to the
same set of ultrafilters.

Page: 22 job: "lappin semantics handbook chapter" macro: handbook.cls date/time: 5-Jun-2014/23:40



Curry Typing, Polymorphism, and Fine-Grained Intensionality 23

in order to explain the persistence of intensional di↵erence beyond provable
equivalence. Therefore, the radically non-possible worlds view of fine-grained
intensionality o↵ered here provides the cleaner approach.
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5 Probabilistic Semantics

In this Section I o↵er some brief programmatic speculations on the sorts of
radical revisions of classical semantic theory that may be required in order to
accommodate both gradience and learning.

5.1 Gradience and Semantic Learning

Formal semantic theories like IL and PTCT model both lexical and phrasal
meaning through categorical rules and algebraic systems that cannot accom-
modate gradience e↵ects. This approach is common to theories which sus-
tain compositionality and those with employ underspecified representations.
It e↵ectively invokes the same strong version of the competence-performance
distinction that categorical models of syntax assume. This view of linguistic
knowledge has dominated linguistic theory for the past fifty years.

Gradient e↵ects in representation are ubiquitous throughout linguistic and
other cognitive domains. Any appeal to performance factors to explain gradi-
ence has no explanatory content unless it is supported by a precise account
of how the interaction of competence and performance generates these e↵ects
in each case. By contrast, gradience is intrinsic to the formal models that
information theoretic methods use to represent events and processes.

Lexically mediated relations like synonymy, antinomy, polysemy, and
hyponymy are notoriously prone to clustering and overlap e↵ects. They hold
for pairs of expressions over a continuum of degrees [0, 1], rather than Boolean
values {1, 0}. Moreover, the denotations of major semantic types, like the pre-
dicates corresponding to Nouns, Adjective Phrases, and Verb Phrases, can
rarely, if ever, be identified as sets with determinate membership.

It is also unclear how these representations could be learned from the
primary linguistic data (PLD) of language acquisition. The abstract formal
structures that they posit are not easily inferred from observable data. On the
other hand, there does not seem to be much evidence that they correspond to
biologically conditioned learning biases or categories of perception. Most work
in formal learning for natural languages has focussed on syntax (grammar
induction), morphology, and phonology. The problem of developing a plausible
account of e�cient learnability of appropriate target representations is as
important for semantics as it is for other types of linguistic knowledge.

One way of accommodating both gradience and semantic learning is to
abandon the categorical view of competence and adopt a probabilistic model
of linguistic representation. Stochastic models assign gradient probability val-
ues to judgements. They are the target representations of probabilistic learn-
ing theories. There is a fair amount of evidence to suggest that language
acquisition in general crucially relies on probabilistic learning (see (Clark &
Lappin, 2011)). The case for a probabilistic approach to both representation
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and learning is at least as strong in semantics as it is in syntax, as well as in
other parts of the grammar.12

5.2 Type Theory in Probabilistic Semantics: A Top-Down
Approach

There are two obvious strategies for constructing a probabilistic semantics.
On the top-down approach one sustains classical (categorical) type and model
theories, and then specifies a function that assigns probability values to the
possible worlds that the model provides. The probability value of a sentence
relative to a modelM is the sum of the probabilities of the worlds in which it is
true. On the bottom-up approach one defines a probabilistic type theory and
characterizes the probability value of a sentence as the output of the function
that applies to the probabilistic semantic type judgements associated with its
syntactic constituents.

In their proposal van Eijck & Lappin (2012) adopt the top-down strategy.
They retain a classical type theory and the specification of intensions for each
type as functions from worlds to extensions. They define a probabilistic model

M as a tuple hD,W,P i with D a domain, W a set of worlds for that domain
(predicate interpretations in that domain), and P a probability function over
W , i.e., for all w 2 W , P (w) 2 [0, 1], and

P
w2W

P (w) = 1.
An interpretation of a language L in a M = hD,W,P i is given in terms of

the standard notion w |= �, as follows:

[[�]]M :=
X

P (w) s.t w 2 W ^ w |= �

This definition of a model entails that

[[¬�]]M = 1� [[�]]M .

Also, if

� |= ¬ , i.e., if W
�

\W

 

= ;,

then

[[� _  ]]M =
P

w2W�_ 
P (w) =

P
w2W�

P (w) +
P

w2W 
P (w) = [[�]]M + [[ ]]M ,

as required by the axioms of Kolmogorov (1950)’s probability calculus.
This theory has several attractive properties. It retains a classical type

system and model theory to compute the value of a sentence in a world, and

12 See Manning (2003), Cohen (2003), and some of the other papers in that collec-
tion for detailed arguments in support of a probabilistic approach to linguistic
representation.
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then it applies a standard probability calculus to compute the probability of
a sentence. Therefore, it uses well understood formal systems at both levels
of representation. It also proposes the outline of a theory of semantic learning
for simple one-place predicate classifiers, where this could be generalized to a
richer representation language.

However, it su↵ers from the disadvantage that it requires probabilities to
be assigned to entire worlds in the model, with sentences receiving probab-
ility values derivatively from these assignments. As we saw in Section 2.4,
worlds are not tractably representable, and so this approach does not o↵er a
cognitively plausible framework for developing a probabilistic semantics.

5.3 Type Theory in Probabilistic Semantics: A Bottom-Up
Approach

A bottom-up model assigns probabilities to individual type judgements as
classifier applications. The probability of a sentence is computed directly from
the probabilities of its constituent types. This approach avoids the holism of
the top-down view. It can be applied to rich type theories like PTCT or TTR,
transforming them into gradient models of classification and predication. Such
a probabilistic type theory would also o↵er the basis for an account of semantic
learning in which individual classifiers are acquired probabilistically through
observation driven Bayesian inference and update rules.

Cooper et al. (2014) propose a probabilistic version of TTR in which type
judgements are assigned probability values. Central to standard formulations
of rich type theories (for example, (Martin-Löf, 1984)) is the notion of a judge-
ment a : T , that object a is of type T . Cooper et al. (2014) represent the prob-
ability of this judgement as p(a : T ). Their system (based on (Cooper, 2012))
includes the types of TTR, and equations for computing the probability values
of judgements for each of these types.

Probability theorists working in AI often describe probability judgements
as involving distributions over worlds. In fact, they tend to limit such judge-
ments to a restricted set of outcomes or events, each of which corresponds to
a partial world which is, e↵ectively, a type of situation (Halpern, 2003; Good-
man & Lassiter, this volume). A classic example of the reduction of worlds
to situation types in probability theory is the estimation of the likelihood of
heads vs tails in a series of coin tosses. Here the world is held constant except
along the dimension of a binary choice between a particular set of possible
outcomes. A slightly more complex case is the probability distribution for
possible results of throwing a single die, which allows for six possibilities cor-
responding to each of its numbered faces. This restricted range of outcomes
constitutes the sample space.

Cooper et al. (2014) make explicit the assumption, common to most prob-
ability theories used in AI, with clearly defined sample spaces, that probability
is distributed over situation types (Barwise & Perry, 1983), rather than over
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sets of entire worlds, or the set of all possible situations. An Austinian propos-
ition is a judgement that a situation is of a particular type, and they treat it
as probabilistic. In fact, it expresses a subjective probability in that it encodes
the belief of an agent concerning the likelihood that a situation is of that type.
The core of an Austinian proposition is a type judgement of the form s : T ,
which states that a situation s is of type T . On their account this judgement is
expressed probabilistically as p(s : T ) = r, where r 2 [0,1]. In the probabilistic
type system that Cooper et al. (2014) propose situation types are intensional
objects over which probability distributions are specified. This allows one to
reason about the likelihood of alternative states of a↵airs without invoking
possible worlds or possible situations.

The theory assumes only actual situations, and an intensional type system.
Types are not sets of situations. They can be as large or as small as we require
them to be. It is not necessary to represent the full set of situations (actual
or possible) in order to acquire these types. They are classifiers of situations
that can be learned through sampling of actual situations, and probabilistic
reasoning concerning the types to which they belong. Therefore, the problems
of tractable representation that we encountered with worlds, and with the set
of possible situations do not arise in this framework.

Cooper et al. (2014) specify compositional rules for computing the probab-
ility values of Austinian propositions expressed by declarative sentences from
the interpretations of their syntactic constituents. They also give an outline
of a learning theory for naive Bayesian classifiers, where these support the
acquisition of the basic types of the semantics. The type system provides the
interface between observation based learning of perceptual classifiers and the
combinatorial semantic procedures that generate the interpretations of com-
plex expressions in natural language.

5.4 Uncertainty and Vagueness

Identifying the interpretations of sentences with their probability conditions
permits us to model the uncertainty that characterizes some judgements con-
cerning semantic relations and predications for a language. This sort of uncer-
tainty accounts for an important element of gradience in semantic knowledge.
It captures the defeasibility of implications, and the graded nature of syn-
onymy (co-intensionality) and meaning intersection. However, it is unclear
whether all species of semantic vagueness can be subsumed by the uncer-
tainty that probabilistic judgements express. The vagueness that infects the
application of degree modifiers (ajar, open, tall, fast) does not seem directly
reducible to the uncertainty that probability measures.13

13 See Lassiter (this volume) for a discussion of degree modifiers and Goodman &
Lassiter (this volume) for a probabilistic treatment of vagueness and uncertainty
in predication.
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Edgington (1997) suggests that vagueness and uncertainty (Bayesian prob-
ability) share the same formal structure, but that they are distinct phenom-
ena. She does not explain the apparent isomorphism between uncertainty
and vagueness, and so it remains coincidental on her account. Lassiter (2011)
seeks to reduce vagueness to probability, but at the cost of treating a vague
predicate as ambiguous among an unbounded disjunction of semantically de-
terminate variants over which probability is distributed. Neither Edgington
nor Lassiter o↵er a type theory for computing the graded semantic value of a
sentence. They also do not propose an account of semantic learning, nor do
they consider its connection to vagueness.14

It may be possible to account for vagueness as an e↵ect of semantic learn-
ing. Learners estimate the likelihood that competent speakers will assent to
the application of a predicate (modifier) to a class of objects or events. In the
absence of disambiguating evidence, a probability distribution over situation
types for a range of predicate applications may survive learning to be incor-
porated into the model of mature speakers. Uncertainty in learning becomes
vagueness in the intensions of predicates for mature speakers. On this view,
vagueness is, then, the residue of probabilistic learning that survives into the
mature representation systems of semantically competent speakers. No ad-
ditional facts of the sort that drive semantic learning will decide among the
gradient judgements that are left over once the learning process has converged
on mature semantic representation. While gradience starts out as the product
of a learner’s probability distribution over judgements that competent speak-
ers will accept a predication in a given context, it ends up as an intrinsic
feature of the predication itself, due to the fact that the data of learning does
not fully resolve the uncertainty of these judgements.

14 Sutton (2013) presents detailed critical discussions of Edgington’s and Lassiter’s
respective treatments of vagueness, as well as Williamson (1994)’s epistemicist
view. He proposes an alternative probabilistic account that shares some of the
main features of Cooper et al. (2014)’s approach.
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6 Conclusions and Future Work

We have considered the architecture of classical Montague semantics, which
has been the dominant influence in formal semantic theory for the past thirty-
five years, and we have identified several foundational problems with it. Its
reliance on a rigid and impoverished system of Church typing prevents it from
handling the polymorphism and subtyping exhibited in natural language. Its
modalized treatment of intensions does not allow for an appropriately fine-
grained account of semantic di↵erence. The categorical nature of Montague se-
mantics excludes the gradience that is pervasive in natural language semantic
properties. The representations that it generates do not to lend themselves
to a plausible account of semantic learning. Its reliance on possible worlds to
model intentionality prevents it from o↵ering a cognitively viable semantic
framework because worlds are not e↵ectively representability.

By adopting a flexible Curry typing framework PTCT achieves a con-
strained polymorphism that is adequate for the type heterogenity of natural
language expressions of functional type. It incorporates a rich system of sub-
typing and product types that covers some of the fine-grained intensionality
that IL cannot express. PTCT uses the untyped �-calculus to generate terms
that correspond to intensions, and a proof theory that sustains the distinction
between provable equivalence and intensional identity. In this way it formally
models fined-grained intensional di↵erence.

I propose a computational interpretation of this model on which an inten-
sion of a computable function is the sequence of procedures that it applies
to compute its value. This permits us to express intensional non-identity as
operational di↵erence. Provable equivalence is sameness of denotational value
for two functions, entailed by their respective specifications. This equivalence
is compatible with the functions being operationally distinct. The compu-
tational interpretation o↵ers anl account of fine-grained intensionality that
avoids the problem of ine↵ability, and which does not rely on possible worlds.

Even representation languages with flexible, rich type theories, like PTCT,
cannot accommodate gradience or address semantic learning, when they in-
corporate the same categorical algebraic methods as classical frameworks like
IL. A promising way of approaching these problems is to reconstruct a rich
type theory as a system of probabilistic judgements that situations are of a
particular type. The gradience of a semantic property is derived from the se-
mantic learning process. Learners assign probabilities to type judgements on
the basis of the likelihood that semantically competent speakers endorse these
judgements. Learning consists in converging on the representation of property
types that mature speakers have achieved, and vagueness is the residue of un-
resolved uncertainty that survives semantic learning.

In order for this program for constructing a probabilistic type theory to
be successful it must devise appropriate principles for computing the probab-
ility values of distinct type judgements, and an e↵ective set of combinatorial
procedures for deriving the probabilistic interpretations of complex expres-
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sions from their constituent types. Cooper et al. (2014) have made made a
promising start on this task, but it remains the primary challenge for future
research on probabilistic semantics.
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