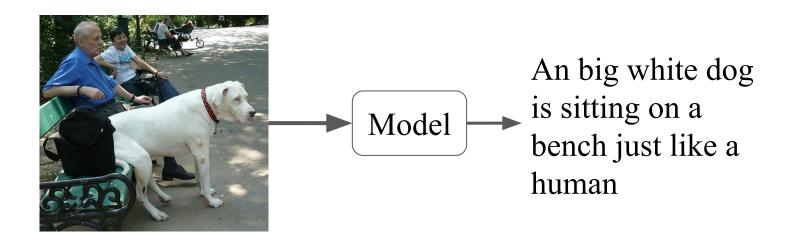
Compositional Generalisation in Image Captioning

Desmond Elliott
University of Copenhagen

Mitja Nikolaus, Mostafa Abdou, Rahul Aralikatte, Matthew Lamm, Desmond Elliott. CoNLL 2019

CLASP/CLT Seminar February 20, 2020

Image captioning¹

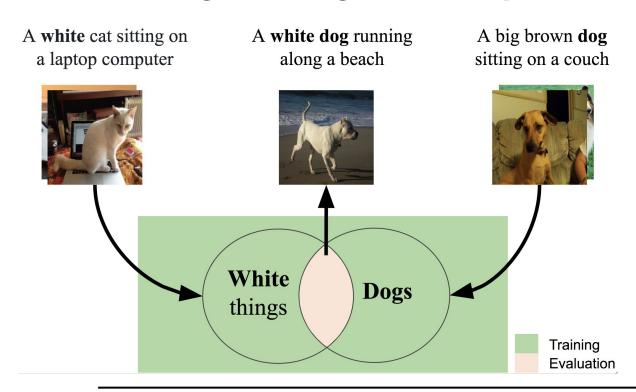


On Surpassing Human-level Performance

- State-of-the-art models surpass human performance according to BLEU, etc.²
- But humans still prefer the human-written sentences (e.g. Vinyals et al., 2017)
- Systematic compositionality is a key property of human language (Partee, 1984)

How well do image captioning models perform X+Y generalisation, e.g. *adjective-noun* and *noun-verb*?

Forcing Paradigmatic Gaps



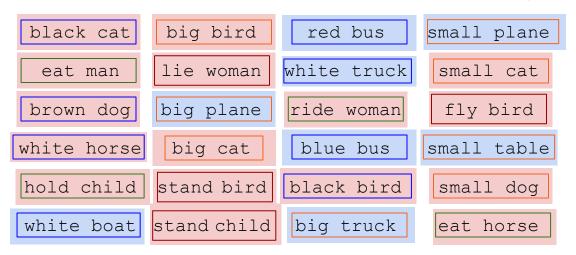
Related Work: Grounded Language

- <subject, relation, object> prediction (Atzmonet al. 2016)
- CLEVR: synthetic data question-answering (W?-words) (Johnson et al. 2016)
- Quantification in grounding, e.g. some, all, few, many... (Pezzelle et al. 2018)
- Captioning unseen objects (Agrawal et al. 2019), unseen object pairs (Lu et al. 2018)

This work: natural images and full sentence generation

Generalization of 24 Concept Pairs

Choose concepts that are likely to be encoded by a visual recognition model



Adjectives:

Colour

Size

Verbs:

Transitive

Intransitive

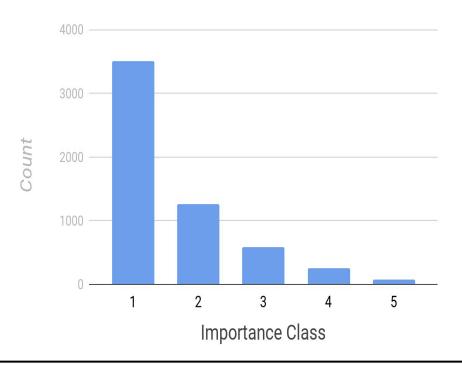
Nouns:

Animate

Inanimate

Importance Classes of Concept Pairs

- The distribution of the concept pairs shows their importance class (van Miltenburg et al. 2018)
- Skewed distribution is likely because the caption crowdsourcing task is relatively loosely defined



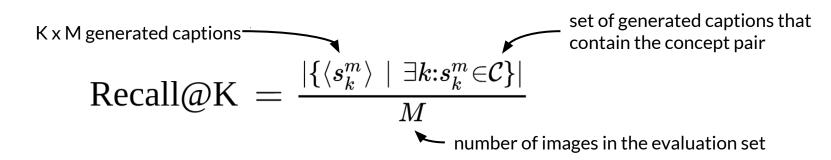
Methodology

- English Dataset: MS COCO
 - Train on data that excludes the held-out concept pairs
 - Evaluate on data that contains only the held-out concept pairs
- State-of-the-art models:
 - Show, Attend and Tell (SAT; Xu et al., 2015)
 - Bottom-Up and Top-Down (BUTD; Anderson et. al., 2018)
 - Image-Sentence Ranking: (VSE++; Faghri et al., 2018)
- Full Data: Train on the full MS COCO dataset

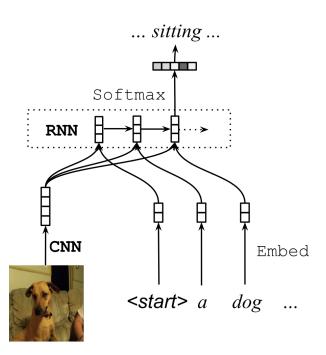
Recall@K Evaluation Metric

a big **white dog** is on a bench a man is walking a dog in the street a man is walking a **white dog** a man is riding a white horse a boy is sitting next to a **white dog**

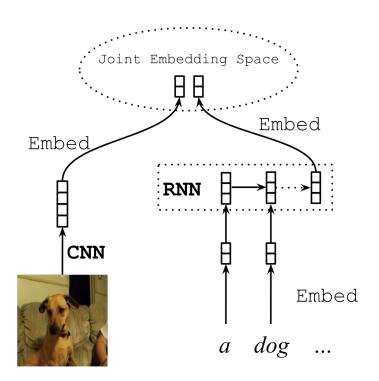
Evaluation metric: Recall of the **concept pair** in the *top K* generated captions



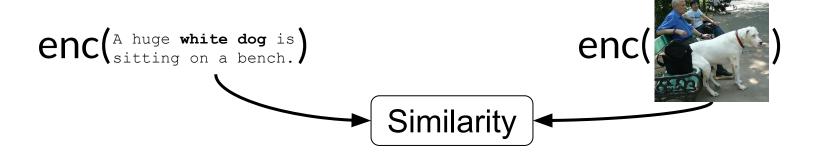
Captioning



Ranking



Evaluating the Ranking Model



+ 500 images of white things

+ 500 images of dogs

State of the Art Performance

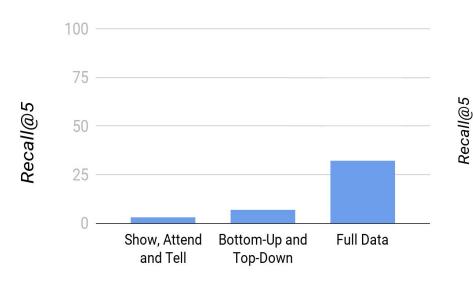
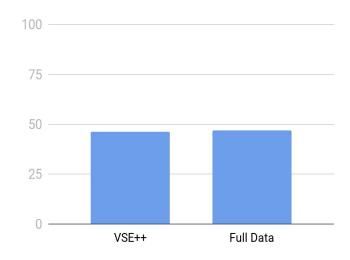
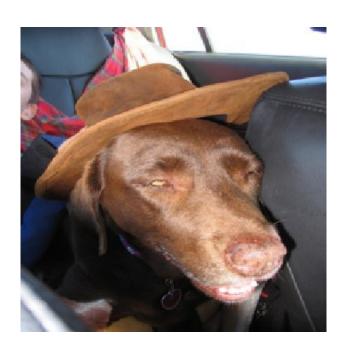


Image-Sentence Ranking



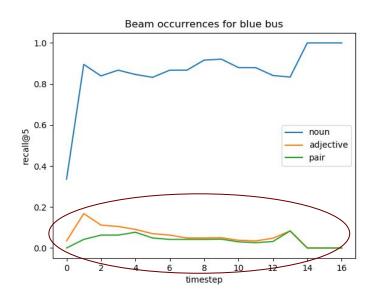
Analysis: rainbow dog



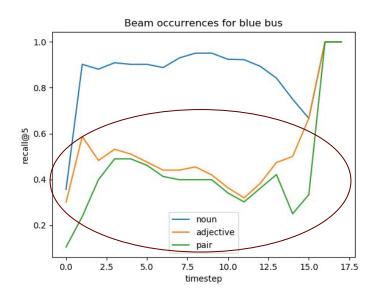
	log(prob)
a small dog sitting in a car seat	-7.57
a small brown dog sitting in a car seat	-11.38
a small black dog sitting in a car seat	-10.23
a small white dog sitting in a car seat	-12.37
a small gray dog sitting in a car seat	-12.16
a small red dog sitting in a car seat	-14.15
a small blue dog sitting in a car seat	-14.34
a small yellow dog sitting in a car seat	-15.98
a small green dog sitting in a car seat	-16.83

More analysis: peeking at the caption beam

Bottom-Up and Top-Down



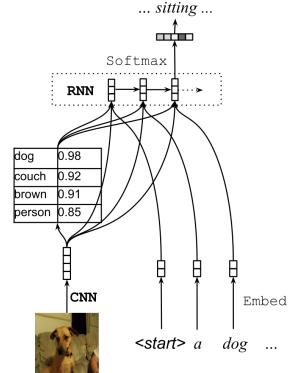
Full Data



Even More Analysis: Probing Image Attributes

Semantic Compositional Network³

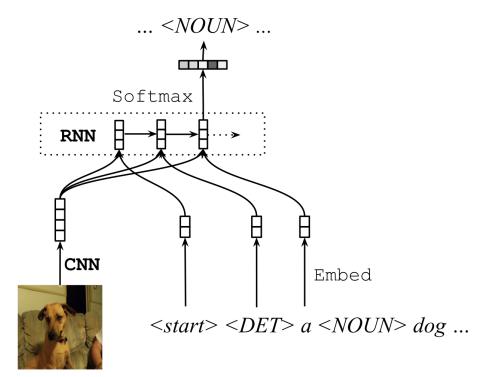
- Average attribute probabilities:
 - o dog: 0.98
 - o brown: 0.74
- Recall@5:0
- → Problem is **not the encoder**



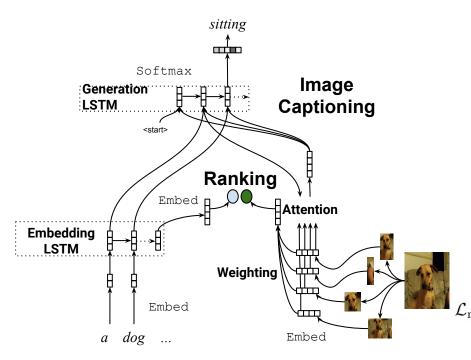
Bonus Analysis: Forcing "Structure"

Adapted dataset: Interleave POS tags

- Force an adjective before noun
 - Recall@5 of up-to 17.8
- → Problem is the decoding strategy



BUTR: Multi-task Captioning and Image-Sentence Ranking



$$oldsymbol{h}_t^l = ext{LSTM}(oldsymbol{W}_1oldsymbol{o}_t, oldsymbol{h}_{t-1}^l)$$

Encode tokens

$$oldsymbol{s}^* = oldsymbol{W}_2 oldsymbol{h}_{t=T}^l$$

$$egin{aligned} oldsymbol{v}_r^e &= oldsymbol{W}_3 oldsymbol{v}_r \ eta'_r &= oldsymbol{W}_4 oldsymbol{v}_r^e \ oldsymbol{eta} &= \operatorname{softmax}(oldsymbol{eta}') \end{aligned}$$

$$oldsymbol{v}^* = \sum_{r=1}^R eta_r oldsymbol{v}_r^e$$

Sentence: embedded d image

Embed each image region

Image:

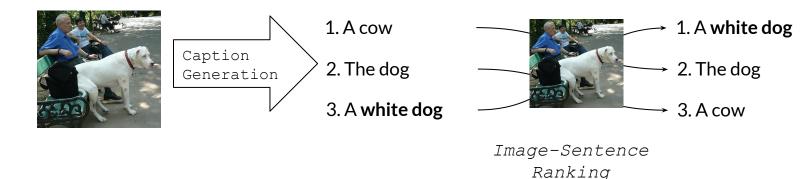
Unconditional weighted sum of embeddings

$$\mathcal{L}_{\text{rank}}(\theta_2) = \max_{s'} [\alpha + \cos(i, s') - \cos(i, s)]_+$$
$$+ \max_{s'} [\alpha + \cos(i', s) - \cos(i, s)]_+$$

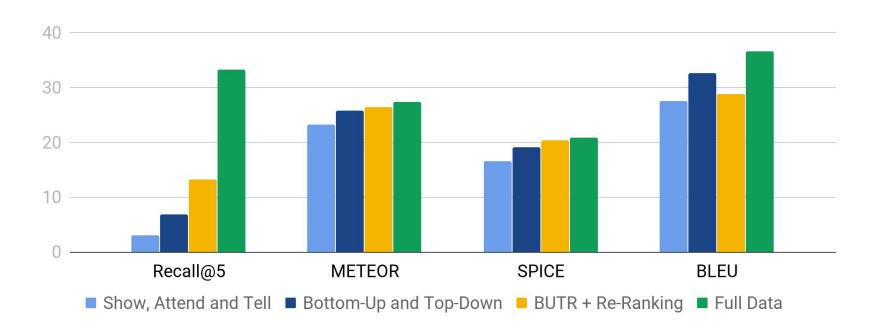
BUTR: Reranking the beam

1. Generate *K* candidate captions

2. Re-rank using image-sentence similarity ranking model



Results



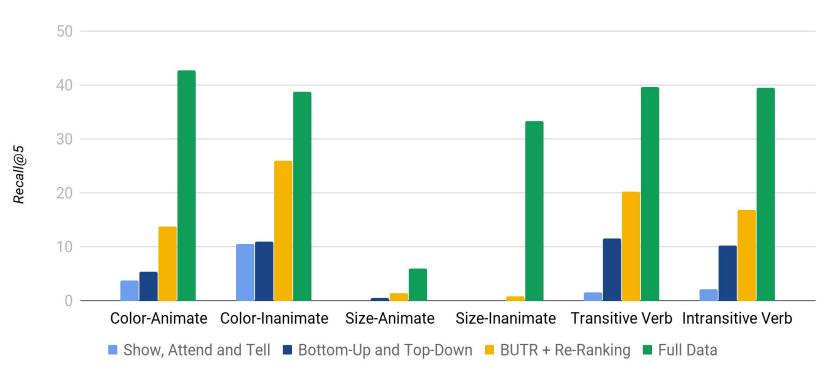
BLEU blues: output diversity analysis³

Generating novel sentences is key to success in this task

Model	ASL	SDSL	Types	TTR_1	%Novel
Liu et al. (2017)	10.3	1.32	598	0.17	50.1
Vinyals et al. (2017)	10.1	1.28	953	0.21	90.5
Shetty et al. (2017)	9.4	1.31	2611	0.24	80.5
BUTD	9.0	1.01	1162	0.22	56.4
BUTR	10.2	1.76	1882	0.26	93.6
Validation data	11.3	2.61	9200	0.32	95.3

²⁰

Recall@5 by Type

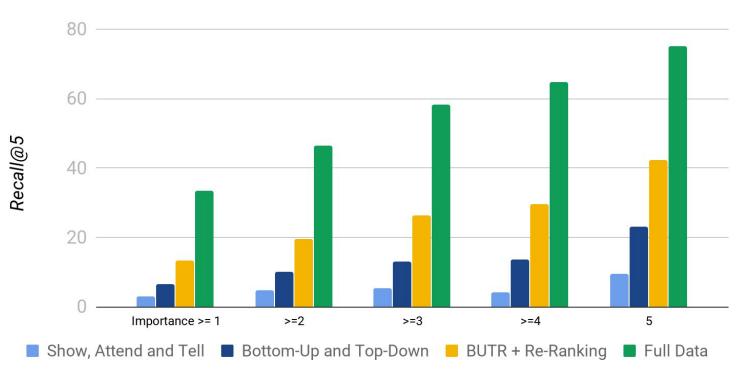


How big is a big thing anyway?

• Size modifiers are more concerned with reference classes than the depicted size.

Concept	Average bounding box size (in pixels)
small cat	$42,920.6 \pm 38,952.2$
big cat	$44,057.4 \pm 41,979.9$
small plane	$33,718.8 \pm 30,481.2$
big plane	$33,263.1 \pm 31,722.9$
small dog	$36,939.5 \pm 41,073.3$
big dog	$37,098.3 \pm 40,088.6$
small table big table	$80,762.0 \pm 89,751.0$ $72,958.0 \pm 91,340.0$
small bird big bird	$15,063.0 \pm 19,487.6$ $14,707.8 \pm 27,008.7$
small truck	$30,014.0 \pm 49,121.4$
big truck	$32,918.2 \pm 46,379.8$

Performance by Importance Class



Qualitative Analysis (beam k=1)

white horse

a black and white cow standing on top of a lush green field

a brown and white cow standing on a lush green field

a large **white horse** standing on top of a green field

small plane

a fighter jet on top of a lush green field

a white and green airplane on a field

a white and green plane is parked on the grass

bird stand

a white bird sitting on top of a car

a white bird sitting on top of a car

a large white **bird** standing on top of a car

SAT

BUTD

BUTR+ Re-Ranking

Conclusions

- State-of-the-art image captioning models do not compositionally generalise
- Jointly learned ranking improves generalisation and text-similarity measures
 - Solution is **not** specific to generalisation of pairs of concepts
- Future work
 - Tackle generalisation with syntactic planning
 - Improve size modifier generalization
 - Integrate jointly-trained discriminative re-rankers in other NLP tasks