Tickle me BERT: The effect of laughter on dialogue act recognition

Bill Noble Vladislav Maraev

CLASP seminar Feb. 26th

BERT

- Large-scale language models (e.g. BERT) achieve state-of-the-art results on traditional NLP tasks.
- But are they useful for dialogue?
- To answer this, we decided to see how good BERT is on a dialogue act recognition (DAR) task.

Dialogue acts (DAs)

- Theory of dialogue acts is based on the theory of speech acts.
- The idea is that utterances can convey actions (e.g. promising or apologising).
- DAMSL schema for dialogue act tagging
- forward-looking (expecting a response) and backward-looking (responding to a preceding utterance) DAs

Dialogue act recognition assigning DA tag to every utterance

	Utterance	Dialogue act
A:	Well, I'm the kind of cook that I don't normally measure things,	Statement-non- opinion (sd)
A:	l just kind of throw them in	sd
A:	and, you know, I don't to the point of, you know, measuring down to the exact amount that they say.	sd
B:	That means that you are real cook.	Statement-opinion
A:	<laughter> Oh, is that what it means</laughter>	Downplayer
A:	Uh-huh.	Backchannel
A:	<laughter></laughter>	Non-verbal

Data: corpora

Switchboard	AMI Corpus	
Dyadic	Multi-party	
Casual conversation	Mock business meeting	
Telephone	Face-to-face	
English	English	
Native speakers	Native & non-native speakers	
early 90's	2000's	
2000 conversations	171 meetings	
1115 in SWDA	131 in AMI-DA	
400k utterances	118k utterances	
3M tokens	1.2M tokens	

But would it be a problem for BERT?

- Different sequential structure of discourse (taking turns and switching perspectives)
- Internal structure is different (disfluencies, non-verbal vocalisations, NSUs, etc.)
- Syntactic structure is different ("I don't to the point of, you know, measuring down to the exact amount that they say")

And of course: laughter

- In Switchboard it comes about every 200 tokens.
- It is related to discourse item (laughable), which can be described in the dialogue.
- Laughter can help to determine sincerity of an utterance, e.g. to detect sarcasm.*
- Laughs appear in any kind of DA.

^{*} Joseph Tepperman, David Traum, and Shrikanth Narayanan (2006) "Yeah right": Sarcasm recognition for spoken dialogue systems. In *Ninth International Conference on Spoken Language Processing.*

DA has laughter in one of its adjacent utterances DA contains laughter

Neural dialogue act recognition sequence model

Utterance encoder: BERT

- Multi-layer transformer (Base model: 768-dimension hidden, 12 layers)
- Trained on BookCorpus* (800M words)
 + English Wikipedia (2,500 words)

^{*} https://www.smashwords.com/books/

Pre-training BERT

- Masked token prediction [CLS] my dog is [MASK] [SEP] -> hairy
- Next sentence prediction [CLS] the man went to [MASK] store [SEP] he bought a gallon [MASK] milk [SEP] -> IsNext

[CLS] the man [MASK] to the store
[SEP] penguin [MASK] are flight
##less birds [SEP] -> NotNext

Utterance encoder: CNN

• Kim (2014)-style encoder Word-level CNN Window sizes 3, 4, 5 100 feature maps

 Word embeddings gloVe 100 dimensions

Preprocessing

- We remove disfluencies and speech-laughs
- Laughs are normalised: [LAUGH]
- All utterances are lower-cased.
- We use BERT's word piece tokeniser with a vocabulary of 30,000.
- We prepend each utterance with a speaker token: [SPKR_A], [SPKR_B]...

Experiment 1...

Experiment 1. Impact of laughter

Is laughter helpful for DAR?

• We train two versions for each utterance encoder: with and without laughter and compare them.

Experiment 1: Results

SWDA AMI-DA F1* F1 acc. acc. 49.09 BERT-NL 38.10 77.07 67.06 BERT-L 45.99 76.93 50.17 67.12 CNN-NL 37.23 75.08 38.37 63.46 CNN-L 27.59 75.40 37.94 64.30

^{*} Henceforth, we report macro-averaged F1 scores.

Confusion matrices: BERT-NL (*left*) **vs** BERT-L (*right*)

The case of rhetorical questions

		Utterance	Dialogue act
	B:	Um, as far as spare time, they talked about,	sd
	B:	l don't, + l think,	Uninterpretable
, h.,	B:	who has any spare time <laughter>?</laughter>	Rhetorical-Q.
	A:	<laughter>.</laughter>	Non-verbal

Experiment 2. Impact of pre-training vs. fine-tuning

How does pre-training affect BERT's DAR performance?

Experiment 2: Results

SWDA AMI-DA F1 F1 acc. acc. BERT-FT 45.99 76.93 50.03 66.94 73.80 BFRT-RT 32.18 33.45 61.53 BERT-FZ 7.75 46.5955.61 14.44

- Fine-tuning makes difference: 7.3% contain laughter (4.6% overall)
- AMI: 9.6% (8.5% overall)

Experiment 2: Fine-tuning laughs

- In BERT-FZ laughter token is randomly initialised and frozen.
- In SWDA fine-tuning makes difference: 7.3% contain laughter (4.6% overall).
- In AMI: 9.6% (8.5% overall)

Experiment 3. Impact of dialogue pre-training

How does additional in-domain pretraining affect BERT's DAR performance?

- SWnDA: SWDA without DA tags
- AMI: AMI-DA + 32 dialogues without tags
- Combined corpus (SWnDA + AMI)

Experiment 3: Results

SWDA AMI-DA F1 acc. F1 acc. Fine-tuned BERT 45.99 76.93 50.03 66.94 BERT-ID 45.48 77.02 46.56 68.66 BERT-CC 47.78 77.35 48.72 66.58 BERT 7.75 55.61 14.44 46.60 Frozen BERT-ID 6.46 52.30 14.43 48.07 BERT-CC 5.76 51.14 12.56 42.42

Conclusions

- Laughter is useful for dialogue act recognition, and its impact varies across different dialogue acts.
- During fine-tuning, BERT learns to represent laughter, a dialogical feature not seen in pre-training.
- Standard BERT pre-training is useful for DAR, but the model performs poorly without fine-tuning.
- Further pre-training with in-domain data shows promise for dialogue, but further investigation with larger dialogue corpora is required.